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1 INTRODUCTION

1.1 CONVOLUTIONAL NEURAL NETWORK

Neural networks are computing systems that are widely used in today’s artificial intelligence research areas
such as computer vision. Although the neural networks are powerful tools to model complex patterns, training
a modern neural network consumes massive computational resources and electric power. Convolutional neural
network is a special type of neural network that specializes in extracting spatial information from a matrix
of numbers. It has been widely used in computer vision research as the backbone model to perform various
advanced computer vision tasks such as object detection, semantic segmentation, visual tracking and etc. Due
to the massive amount of parameters in a deep convolutional neural network, training a model to perform a
certain task is very computationally expensive, especially when CNN is applied to analyze videos.

1.2 QUANTUM COMPUTING

Quantum Computing uses quantum-mechanical theories such as superposition and entanglement to perform
computation. Qubits, fundamental to quantum computing, are analogous to bits in a classical computer, a qubit
can be in a 1 or 0 quantum state, or they can also be in a superposition of the 1 and 0 states. However, when
we measure the result of a qubit, it is always either 0 or 1, the probabilities of the two outcomes depends on
the quantum state that they are in. A quantum computer will have the advantage of using ones, zeros and
superposition of ones and zeros, therefore, it can process a vast number of calculations simultaneously.

1.3 QUANTUM MACHINE LEARNING

Quantum machine learning refers to machine learning algorithms for the analysis of classical data executed on
a quantum computer, it increases the capability to compute immense quantities of data intelligently, by taking
advantage of quantum states and systems.Such technique typically require one to encode the given classical data
set into a quantum computer to make it accessible for quantum information processing. Subsequently, quantum
information processing routines are applied and the result of the quantum computation is read out by measuring
the quantum system.

1.4 RESEARCH PROBLEM

In this project report, we demonstrate a novel approach to image classification by classifying qubit-encoded im-
ages with Quantum Convolutional Neural Network (QCNN). The main contributions of our project are twofold:
(1) We use quantum image processing to represent pixels as quantum states and use these qubit-encoded images,
rather than classically represented images, directly as input of QCNN, thus preserving important spatial informa-
tion while reducing the computational space complexity byO(log (N)); (2) In prior work, QCNN has only been
proved effective on real-world 1-dimensional data, and we confirm QCNN’s ability to classify 2-dimensional
data and reduce the computational time complexity by O(log (N)). We demonstrate the effectiveness of our
approach by training QCNN to classify synthetic 2-dimensional images.

2 RELATED WORK & CONTRIBUTION

2.1 QUANTUM DIGIT CLASSIFICATION

Classical neural networks can classify hand written digits with nearly-perfect accuracy. The archetypal example,
developed by LeCun et al. (2010), is the MNIST data set which consists of 55,000 training samples that are 28
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Figure 1: Training curves of classical CNN and QA-CNN when trained to perform image classification on
MNIST dataset

by 28 pixelated images of hand written digits ranging from 0 to 9 labeled by humans. MNIST digit classification
has since been used as a testbed for studying classical neural networks, so it seems natural that we study the
effectiveness of quantum neural networks in this setting. Farhi & Neven (2018) developed a quantum neural
network (QNN) framework that learns to correctly distinguish the digits. But the proposed method has several
profound limitations. First, the training images are downsampled from 28 × 28 to 4 × 4, so important spatial
features and correlations are lost. Second, Farhi & Neven (2018) proposed representing each pixel with a qubit,
with the state depending on the value of the pixel. Thus, the spatial complexity for the classical and quantum
representations of the input images are the same. Finally, QNN only accomplishes to perform classification of
two distinct digits, whereas in the MNIST dataset, there are 10 distinct digits.

2.2 QUANTUM-ACCELERATED CNN (QA-CNN)

Although with the same name as Cong et al. (2019) – Quantum Convolutional Neural Network, Kerenidis et al.
(2019) takes a different approach. Cong et al. (2019) processes an image encoded in qubits, while Kerenidis et al.
(2019) processes classical images with quantum-accelerated forward and backward propagation. Therefore, we
will refer to this model as Quantum-accelerated Convolutional Neural Network (QA-CNN). There are two main
contributions by QA-CNN: proposed a QCNN layer and a quantum backpropagation algorithm. The highlight
of this paper is an image classification experiment performed on the MNIST dataset. A comparison between
classical CNN and QA-CNN is provided in the trainig curve 1.

2.3 QUANTUM EDGE DETECTION ALGORITHM

Classically, edge detection methods compute image gradients by different types of filtering masks in O(2n), a
highly efficient quantum algorithm named Quantum Hadamard Edge Detection(QHED) can provide an expo-
nential speed-up to O(1), means the algorithm is independent of the image size. Basically, a Hadamard gate
H is applied to detect the boundary. Apply the Hadamard gate to an 2n−1 × 2n−1 identity matrix, the total
operation is then I2n−1 ⊗ H . For an n-qubit input image state |f〉 =

∑N−1
k=0 ck |f〉 (N = 2npixels), we have

the output image state |g〉 = (I2n−1 ⊗H) |f〉, here we check the even elements of the resulting state, if the two
pixels belong to the same region, their intensity values are identical and the difference vanishes, otherwise their
difference is non-vanishing, which indicates a region boundary. Therefore, this procedure yields the horizontal
boundaries between pixels at position 0/1, 2/3, etc.

To obtain the boundaries between the remaining pairs 1/2, 3/4, etc., apply the n-qubit amplitude permutation
to input, yielding a new image representation |f ′〉 with its odd(even) elements equal to the even(odd) elements
of the original input.the quantum amplitude permutation can be performed in O[poly(n)] time. The QHED
algorithm generates a quantum state into classical information will require O(2n) measurements but if the goal
is to discover if a specific pattern is present in the picture, a measurement of single local observable may be
sufficient.
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3 METHOD

There are two stages in our method of classifying 2-dimensional images: first, we process the classically rep-
resented images and convert them into images represented by quantum states; next, we use the encoded images
directly as input to learn a QCNN classifer. We will describe these two stages in detail below.

3.1 QUANTUM IMAGE PROCESSING

Representing images classically pixel by pixel requires significantly large amount of computational resources,
especially when operations are performed on them. As a much more efficient approach, we encode the images
in quantum information by representing the classical bits of information using qubits. Specifically, we adopt the
method Flexible Representation of Quantum Images (FRQI) proposed by Le et al. (2011). This method allows
us to encode an 2N ∗ 2N image bits of information in 2N + 1 qubits. The intensity values are encoded in the
amplitudes of the quantum states and the images will be retrieved via normalized probability distributions. We
encode the states as:

|I(θ)〉 = 1

2n

22n−1∑
i=0

(sin(θi)|0〉+ cos(θi)|1〉)|i〉

where θi corresponds to the intensity of the ith pixel. For example, an 2x2 image with intensity values

[
θ1 θ3
θ2 θ4

]

will be encoded as:

1

2
[cos(θ1) + sin(θ1)|00〉+ (cos(θ2) + sin(θ2))|01〉+ (cos(θ3) + sin(θ3))|10〉+ (cos(θ4) + sin(θ4))|11〉]

We chose FRQI over other quantum image processing methods such as NEQR and 2D-QSNA, which are dis-
cussed by Dendukuri & Luu (2018), due to its low complexity and practicality. The intensity values are encoded
in the amplitudes of the quantum state, so that it is straightforward to apply various transformation like QFT
directly on the amplitudes later in our QCNN. However, this method limits us to be processing images of di-
mensions 2N × 2N only. It also requires extra qubits to encode the positions along with the pixel intensities.

The FRQI states can be achieved via a circuit of Hadamard and control y rotation gates. Figure 3 shows our
implementation of the circuit that encodes FRQI states.

3.2 QUANTUM CONVOLUTIONAL NEURAL NETWORK

Motivated by the classical convolutional neural network architecture, Cong et al. (2019) introduced a quantum
circuit model that extends the key properties of CNN to the quantum domain. As shown in Figure 2, the
circuit’s input is an unknown quantum state ρin. A convolution layer applies a single quasi-local unitary (Ui)in
a translationally invariant manner for finite depth. For pooling, a fraction of qubits are measured, and their
outcomes determine unitary rotations (Vj) applied to nearby qubits. Hence, nonlinearities in QCNN arise from
reducing the number of degrees of freedom. Convolution and pooling layers are performed until the system size
is sufficiently small; then, a fully connected layer is applied as a unitary F on the remaining qubits. Finally, the
outcome of the circuit is obtained by measuring a fixed number of output qubits. As in the classical case, circuit
structures (i.e. QCNN hyperparameters) such as the number of convolution and pooling layers are fixed, and
the unitaries themselves are learned.
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Figure 2: (a) Architecture of classical CNN (b) Architecture of QCNN

4 EXPERIMENT

4.1 QUANTUM EXPERIMENTS VS. SIMULATION

Just as most of research in quantum computing, we had the choices of performing our experiments in simulation
or on a real quantum computer. There are pros and cons when it comes to which route to follow. The pros
of using simulation over quantum computer will be more abundant computation resources. One doesn’t need
to wait in long queues to put jobs on a quantum computer. Besides, on a quantum simulator is not limited by
number of possible qubits that can be accessed and the long queue time for using them. As such, it is more
scalable to perform experiments in a quantum simulator. Furthermore, thanks to the nature of simulation, qubits
won’t decohere over time and thus result in noisy output as much as on real devices. Oppositely, the pros of using
quantum computer over simulator will be more convincing conclusions. In addition, in classical computers, we
need to explicitly definte the superposition of qubits and store it in memory, whereas if we use a quantum
computer, superposition is an intrinsic property, so it’s not necessary to store the information. Experiments done
on a quantum computer prove the applicability of the concept on an actual quantum computer while a simulator
is slightly different.

Considering the pros and cons, we chose to perform our experiments in simulation, since it is relatively cheap
and easier to scale up, its results are more stable and won’t decohere over time, and we can avoid potentially
long queues for using real devices.

4.2 RELATED LIBRARIES

In our implementation of quantum image classification via QCNN, we used Cirq, an open-source framework
for Noisy Intermediate Scale Quantum (NISQ) computers library developed by the Google AI Quantum Team,
and the quantum machine learning library, TensorFlow Quantum, developed by Broughton et al. (2020).

4.3 EXPERIMENT WORKFLOW

We use FRQI proposed by Le et al. (2011) to first process 21×21 images and feed their quantum representation
into our QCNN. Any computations in our QCNN will be purely quantum. By demonstrating the feasibility of
training a QCNN using qubit-encoded images, we lay the foundation for later studies to investigate QCNN on
larger quantum images.

4.3.1 DATASET

we build a dataset of 200 images for our experiment, we tried different type of images, including grayscale
images, large-size images, but eventually we reach a final design that all images in the dataset are of size 21×21,
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which means each of them is made up by 4 pixels, we will use the color angles and position information as a
representation of the image, transfer them into quantum superposition using FRQI. Those images whose lower
part are black are labeled as -1, those whose upper part are black are labeled as +1, we build this simple dataset
manually in order to simplify the task, and make a clear observation of the performance of the model. Finally,
we divide this set into two parts, one containing 160 images for training and the other 40 images for testing.

4.3.2 QUANTUM IMAGE PROCESSING

Once we have an input 21×21 image, we use FRQI to transfer it into quantum states, we will use three qubits in
this experiment to represent an image, two of the qubits represent the position of the pixel and one qubit is used
to represent color angle. Since every pixel in our image has RGB values, therefore, we need to transfer them into
a single angle value, which is represented by θ ∈ [0, π2 ]. Since R, G and B values are between 0 and 255, we use
a normalizer to normalize the sum of the three value between 0 and 1, then multiply by π

2 . The proposed FRQI
form is quite flexible because of the way the positions of colors are encoded into computational basis states. In
this way, the presentation of the geometric appearance of colors will affect on the quantum representation of
the image. In quantum computation, computers are usually initialized in well-prepared states.As a result, the
preparation process that transforms quantum computers from the initialized state to the desired quantum image
state is necessary. All transforms used in quantum computation are unitary transforms described by unitary ma-
trices. Quantum mechanics ensure the existence of such unitary transforms for the preparation process without
pointing out explicitly efficient implementation in the sense of using only simple transforms such as Hadamard
transform, rotations, etc. According to the lemma and corollary of the Polynomial Preparation Theorem(PPT),
given a vector θ = (θ0, θ1, ..., θ22n−1) of angles, there is a unitary transform P that turns the quantum com-
puters from the initialized state |0〉⊗2n+1, to the FRQI state, by Hadamard, CNOT and C2n(Ry(

2θi
22n−1 )) gates,

where Ry( 2θi
22n−1 ) are the rotations about ŷ axis by the angle 2θi

22n−1 . We know that Ry(2θ) can be replaced by
cRy(θ), cRy(−θ) and CNOT gates, and cRy(θ) can also be replaced by CNOT, Hadamard and Ry(θ) gates,
Fig. 3 shows how to replace Ry(2θ) using cRy(θ), cRy(−θ) and CNOT gates. Finally, we build a circuit using
three qubits and multiple gates to represent an image.

Figure 3: FRQI circuit implemented

Figure 4: C2(Ry(2θ)) gates can be built from C(Ry(θ)), C(Ry(−θ)) and CNOT gates
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4.3.3 QUANTUM CNN

We use a quantum CNN architecture built by TensorFlow Quantum(TFQ)to accomplish our task, TFQ provides
layer classes designed for in-graph circuit construction, we can use this layer to prepend or append to the
inputbatch of circuits, therefore, we can add our FRQI circuit into this architecture, or regard it as the input
of the whole network. First we need to transfer the circuit into tensor, then define layers that make up the
model. There are a few prerequisites, however, we need to first define a one- and two-qubit parameterized
unitary matrices and a general parameterized two-qubit pooling operation. After all these operators have been
constructed, we built quantum convolution layer and quantum pooling layer, both of which are quantum circuits
as well. The model we defined here will use three quantum convolution layers and three pooling layers. After
finish the construction of the model, we can start the procedure of training, testing and plotting the results which
is pretty same as CNN in a classical computer. For our experiment, we will use MSE as our loss function, since
it is a binary classification problem. Figure 4 shows the architecture of the whole QCNN model.

Figure 5: Building blocks of the Quantum CNN of TensorFlow

FIX

4.4 TOY DATASET

As a training data, we constructed a toy dataset with two ground truth labels, 1 and -1. 1 corresponds to 2x2
RGB images where the top row has pixel values [0, 0, 0], and the bottom row contains random pixel values for
all three channels 6, vice versa for -1 class. Since our data contains relatively simple pattern, we decided the
size of the dataset to be 200 where 160 for training and 40 for validation.

Figure 6: Sample images from toy dataset
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5 RESULTS AND DISCUSSION

Figure 7 is an example of encoding and decoding a 2x2 image using our FRQI circuit. Comparing the input and
output images, we see that the colors do not match exactly. This is due to our algorithm in retrieving the images
via a normalized probability distribution, so the θ values for angles of rotation, thus the RGB value for each
pixel, might not be exact. However, they remain relatively accurate to other pixels in the same image. It is clear
that by having an extra cubit to encode positions along pixel intensities, the spatial information of intensities on
each pixel is indeed preserved; this is essential to convolutional neural networks which are good at extracting
spatial information and thus features of the images.

Figure 7: FRQI example

Our QCNN model was trained on 160 samples and validated on 40 samples of 2x2 RGB images. Figure 8
shows the training and validation losses over 20 epochs of training the model with inputs being the FRQI
encoded quantum states of the pixels in each image. Figure 9 shows the training and validation accuracies over
the same run.

Figure 8: Training and validation losses

Figure 9: Training and validation accuracies
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At the end of epoch No.20, our final training accuracy was 1.0000 while the validation accuracy was also 1.0000;
the MSE (mean squared error) training loss after epoch No.20 was 0.3879 while the validation accuracy was
1.0000 and the MSE validation loss was 0.3740. It is shown that the validation loss is lower than the training
loss at the beginning of epochs, but the two begin to converge as we go further in epochs. Validation happens in
each epoch after the model parameter was updated, and since the training of the model was performed on a toy
dataset with only 2 classes, it makes sense that the validation loss appeared lower at the beginning of epochs.
Given the simplicity of the dataset, it also makes sense that the training accuracy shown in 9 converges quickly
after the second epoch to 1.0000. Increasing the complexity of the classes in the dataset will show a decrease in
convergence rate. Nevertheless, it is robust in our results that the images could be classified with both 1.0000
training accuracy and 1.0000 validation accuracy.

Before our approach, the state-of-the-art approach to classifying digits via quantum neural networks had sub-
optimal image pre-processing procedures. Farhi & Neven (2018) showed methods of down-sampling 28x28
images to 4x4 images; this approach performs 1-to-1 conversion from pixels to qubits, and loses the important
detailed spatial information which the neural network depends on. Our results showed that the approach to
encoding pixel intensities as amplitudes of entangled quantum states using FRQI works in that it not only
exponentially reduces the spacial and time complexity of computation, but also preserves the original detailed
spatial information of intensity value on each pixel.

Before our experiments, Cong et al. (2019) explored only on 1-dimensional input data in the context of quantum
experiments, QCNN’s ability to classify classical 2-dimensional images remained unknown. Our results can
now serve as a proof-of-concept of quantum neural networks ability to classify classical images, lying the
founding ground for future research into classifying classical images with quantum neural networks.

6 FUTURE WORK

6.1 SCALABLE FRQI ALGORITHM

Currently, the quantum gates in FRQI algorithm is hard-coded for the dimension of our toy dataset (2x2x3). As
it’s been proven to work well in the experiments, the next step will be automating the process of FRQI so that
it’s adaptable to images of any dimensions.

6.2 GENERIC FEATURE EXTRACTOR

In the computer vision community, Residual Neural Network (ResNet) He et al. (2016) serves as a backbone for
a lot of model because it’s proven to be a generic feature extractor for static images. Such type of architecture
can learn a semantic representation of an image, and the learned representation can be used to perform custom
computer vision tasks. We realized that there’s still a long way to go for a quantum convolutional neural network
to achieve a comparable ability. The logical first step is to achieve a good classification accuracy on dataset
including real-world images. There are a lot of options for this purposes. Famous vision dataset for image
classification includes MNIST LeCun et al. (2010), CIFAR-10 Krizhevsky et al. (2009), ImageNet Russakovsky
et al. (2015). With an automated FRQI program, we should be able to obtain a preliminary results easily, but
the challenge remains improving the architecture of Q-CNN to achieve a better classification results.
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