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Abstract

Translating from contour sketches to photo-realistic
faces is an image-to-image translation problem, which has
gained a lot of popularity using conditional generative ad-
versarial networks. However, image-to-image paired su-
pervised learning requires expensive gathering of human-
drawn sketches and as a result, previous works addressing
this problem have been using edges automatically gener-
ated from traditional edge detection algorithms that detect
high-frequency information only.

We instead propose to infer contour sketches from real
images using a pre-trained GAN-based network [9]. More-
over, instead of training on sketch-image pairs, we train on
the two domains without pairing specific images. First, we
plan to first transfer-learn a pre-trained Cycle-Consistent
Adversarial Network [18] on our generated sketch dataset
and a real-face image dataset. Then, we develop a web ap-
plication as the user interface to allow users to draw and
demonstrate live generation of face images from sketches.

Our method has several advantages: (1) using inferred
contour sketches instead of traditionally generated edges
allow us to train on human-like contour drawings tat ac-
count for image contextual understanding, (2) unpaired
image-to-image translation allows the network to infer both
the common latent features between domains and the unique
features to each domain, (3) the cycle-consistency ensures
that the output face is invertible. We cross compared our
results to previous related works via quantitative and qual-
itative evaluation methods (see section 5).

1. Motivation

Outlining the contours of a face is usually the first step
in drawing a face. Not only in art, in real life, we do not
always have a photo of a person, and therefore can only in-
fer the real photo from the contour sketches we can make.
Moreover, the most satisfactory outcome usually comes af-

ter multiple feedback rounds, which have been a very slow
process. In an attempt to facilitate such visual retrieval pro-
cess, we present this study to experiment with ways to im-
prove the output fidelity while reducing the huge computa-
tional cost required by most GANs.

2. Related Works

Conditional Generative Adversarial Networks
(cGANs). A cGAN is a GAN except that it conditions
on a specific set of input information, analogous to how
variational autoencoders are used to condition on the
inputs. It also has a generator-discriminator pair with the
generator taking an image from the source domain and out-
putting a fake image aiming to fool the discriminator that it
belongs to the target domain. It is trained on an adversarial
loss. Various applications include image inpainting using
context encoders [11], creating super resolution images
[1], face de-aging [17], text-to-image translation [3],
clothing translation [16], video prediction [13], 3D Object
Generation [14], etc. The primary CycleGAN [18] that we
adopt belongs to this broader category of cGAN.

Sketch-to-Image Translation. The major increase in
the number of studies researching sketch-to-image trans-
lation happens after Isola et al. published their pix2pix
network [7]. pix2pix uses a conditional generative adver-
sarial network to learn a one-to-one mapping from input
to output images that belong to different domains. They
showed that pix2pix can be applicable in a lot of applica-
tions and sketch-to-image was one of them. Since then, nu-
meral studies experimented with tweaking around the archi-
tectures and training pipelines to obtain higher-fidelity out-
puts, such as Scribbler [12] and SketchyGAN [2]. Among
them, Contextual GAN is one that outputs photo-realistic
results [10]. It uses a joint image completion approach to
allow more freedom in the generated features so that they
do not strictly align with the input features as previous con-
ditional GANs do. Moreover, Ghosh et al. [4] made possi-
ble interactive sketch & fill by using a GAN-based residual
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Encoder-Decoder model that adapts from MUNIT [6] and
constructing a gating-based approach for class condition-
ing and shape completion. Their model consists of a sin-
gle generator network. Despite that numerous efforts have
been made in this field, to our observation, all of the exist-
ing methods (1) use supervised learning on sketch-to-image
pairs and (2) use edges generated using traditional edge de-
tection algorithms.

Unpaired Image-to-Image Translation. Zhu et al.
showed that we do not have to train on paired images. In-
stead, they showed that training on domains work even bet-
ter [18]. There are two highlights of this unpaired transla-
tion method: (1) they allow the generators and discriminator
to learn features common and unique to both domains, and
(2) they use a cycle-consistency loss in addition to the ad-
verial loss to ensure that the generated image is invertible.
We used this method in our project.

3. The Limits: Datasets Generation Pipeline

3.1. Face Dataset

We used the open-source CelebA dataset [15]. This
dataset contains 202,599 number of face images of various
celebrities.

Added in re-submission: The limit we impose is that we
use this dataset by starting with 2k image samples for train-
ing and 500 images for testing, and then experimentally
increase the size of the data used if needed. The amount
of data that we eventually used depend on our empirical
assessment of (1) the model performance, (2) the training
time, and (3) if increasing the dataset increases the perfor-
mance.

The faces in the dataset are well centered. Although
there are differences in the backgrounds of each images,
we did not filter this dataset as we do not want filtering to
reduce the variance of our distribution. However, we nor-
malized the images, downsize the images if necessary for
faster runtime, and augment the dataset by random flipping
and croppping to increase the variance of the distribution
and make it more robust to test cases. We downloaded the
dataset from Kaggle1.

3.2. Sketch Dataset

Given the popularity in using cGANs to generate
realistic-looking images from sketches, as far as we have
seen, none of the existing cGAN methods (1) uses a well-
trained network to generate the sketch dataset as they all
used automatic edge detection methods such as Canny
which generates not-human-drawn-looking edges, and (2)
train a generative neural network using the human-drawn-
looking edge photos.

1https://www.kaggle.com/jessicali9530/celeba-dataset

Therefore, we used the contour generator network2 by Li
et al. [9], who have shown that the existing cGAN methods
do not work on sketch generation out-of-the-box, to gen-
erate human-drawn-like contour sketches from the images
in the CelebA dataset. Shown in Figure 1 is the output of
this contour generator network compared to that using the
Holistically-nested edge detection (HED) method. We can
see that HED only captures high frequency signals without
understanding the image, while the contour generator out-
puts salient inner boundaries while reflecting the imperfec-
tions in ground truth human drawing.

Figure 1. Contours generated examples taken from [9]. Unlike tra-
ditional edge detectors which only capture high frequency signals,
the contour generation method we adopt can (1) generate the most
salient inner boundaries, (2) occluding contours, and (3) reflect
imperfections in a human-drawn contour sketch. For example, we
can see that the ceiling is not a perfect straight line.

3.3. Background Masking

Instead of using the CelebA dataset [15] which contains
202,599 number of face images of various celebrities, we
found a better alternative, which was to impose a mask
that exclude out the background information in the CelebA
dataset. We found that the CelebAMask-HQ [8] is such a
dataset that contains 30,000 high-resolution face images se-
lected from the CelebA dataset by following CelebA-HQ.
Each image has segmentation mask of facial attributes cor-
responding to CelebA. We show some face and mask pair
examples in Figure 4.

The masks of CelebAMask-HQ were manually-
annotated with the size of 512 x 512 and 19 classes
including all facial components and accessories such as
skin, nose, eyes, eyebrows, ears, mouth, lip, hair, hat,
eyeglass, earring, necklace, neck, and cloth. The dataset
contains individual components of the face for each face
image. In figure we show how the face is segmented into
different components.

2https://github.com/mtli/PhotoSketch
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Figure 2. Visualization of our generated sketch dataset

Figure 3. Visualization of our masked face dataset

Figure 4. Face and mask pair examples from [8].

3.4. Complexity and Diversity of Our Data

The complete data generation flow. We incorporate the
aggregated mask of all facial components in our pipeline by
multiplying it as an alpha mask for the face images so that
all irrelevant background information is filtered out. More
details are discussed in Section 4. As mentioned in Section
3.2, we then used the contour generator network by Li et
al. [9] to generate human-drawn-like contour images for
2k image samples from the CelebAMask-HQ dataset. The
two output datasets of this pipeline is shown in Figure 2 and
Figure 3.

Complexity and diversity. Unlike a lot of the exist-
ing studies that uses the CelebA dataset, we used the mask
datatset to deliberately allow a great variety of facial fea-
tures, including but not limited to: earrings of different
sizes, different hair decorations, clowns, glasses, hats and
caps, different look angles, neckalces, etc. This greatly in-
creased the diversity in our data. The complexity comes in
when the sketches are generated. From the example shown
above, it is clear that a lot of the sketches are not even
a complete drawing. This is because we want to allow a
greater tolerance of the network being able to reconstruct
an instance of the other domain from one domain - to in-
crease the network robustness.

4. Methods and Anticipated Results

4.1. Model Architecture

Previous methods have mostly used one-to-one paired
supervised training for a sketch-and-image pair. However,
it can be difficult and expensive to obtain paired data, and
sketches often times can consist of different styles of draw-
ing. Therefore, we adopt the unpaired image-to-image
translation method [18] which translates between domains
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instead of paired images, as shown in Figure 6. Just like
how humans do not necessarily need to have seen the one-
to-one edge-to-image pairs in order to imagine a realistic
photo from sketches, the Cycle-Consistent Adversarial Net-
work (CycleGAN) [18] learns the translation between the
sketch domain and the face photo domain.

Figure 6. Paired vs. Unpaired Training. CycleGAN learns be-
tween domain X and Y , instead of image pairs (x1, y1). Image
Taken from [18].

The goal of CycleGAN is to learn mapping functions be-
tween domain X and Y which consist of training samples
xi

N
i=1 with xi ∈ X and yiMi=1 with yi ∈ Y . The mapping

functions are G : X → Y and F : Y → X , as indicated in
Figure 5. Let DX and DY be the two adversarial discrimi-
nators, thenDX aims to discriminate between images x and
the generated images F (y). Similarly, DY discriminate be-
tween images y and the generated images G(x). We want
the generated image to be invertible so that G(F (x)) = x.
We pictorially show this in Figure 7.

4.2. Objective Function

Let x ∼ pdata(x) and y ∼ pdata(y) denote the data dis-
tribution and the rest of the notations follow Figure 5. Then,
the full objective function includes two kinds of losses: ad-
versarial loss and cycle-consistency loss. The impact of
cycle-consistency loss can be observed in Figure 7, that
F (G(x)) ≈ x. The cycle-consistency loss is:

Lcyc(G,F ) = E
x∼pdata(x)

[||F (G(x))− x||1]

+ E
y∼pdata(y)

[|G(F (x))− y|1]

(1)

The adversarial loss is:

LGAN (G,DY , X, Y ) = E
y∼pdata(y)

[logDY (y)]

+ E
x∼pdata(y)

[log(1−DY (G(x)))]

(2)

Then, the full objective function is:

L(G,F,DX , DY ) = LGAN (G,DY , X, Y )

+ LGAN (F,DX , X, Y )

+ λLcyc(G,F )

(3)

where λ controls the relative importance of the two objec-
tives. We aim to solve for the optimal G and F which give
the argmin of max L(G,F,DX , DY ). During our training,
we take the pre-trained network from their code base3, and
transfer-learn it on our sketch and face datasets. We started
with their default training hyper-parameters and then inves-
tigate changes if necessary.

Figure 7. Pictorial examples of F (G(x)) ≈ x. Image Taken from
[18].

4.3. Results, effectiveness, and goodness since the
Prototype

While we present the evaluation of the results of our
compressed and uncompressed CycleGAN in the next sec-
tion, it is worth mentioning that for the CycleGAN, we ex-
pect to see generated faces to be more photo-realistic as
compared to previous methods. We also expect that the gen-
erated face should be invertible to the contour sketch. For
the compressed CycleGAN, we expect the results from the
compressed CycleGAN to be similar to that from the un-
compressed.

3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Figure 5. Illustration of cycle-consistency to ensure the generated image is invertible to the input image. (a) we want G(F (x)) = x; (b)
forward cycle-consistency loss of F (G(x)) ≈ x; (c) backward cycle-consistency loss of G(F (y)) ≈ y. Image Taken from [18].

Figure 8. Testing results of our network. Top row: Face Sketch Input. Bottom row: Generated Face Output. Note that we only use the one
generator that generates from the sketch domain to the face image domain.

4.3.1 The Training Challenges

Figure 9. A screenshot of the training progress on Tensorboard.

The entire pipeline is constructed on Google Cloud Plat-
form in Tensorflow 2.0 with an NVIDIA tesla T4 GPU.
A test pass take 4.957569774 seconds to finish. Training
progress of multiple runs with different parameters turned
is shown in Figure 9. The curves of different colors indi-
cate different runs started at different time. We can see that
for the blue run, the validation accuracy is around 0.8. We
are still in the process of improving this accuracy. An illus-
tration of the test pass is shown in Figure ??. Details are
discussed in the demo.

Since the prototype, we were able to compress the run-

time down from 4.17 seconds to 2.1 seconds for real-time
interaction. We decided that compression is unnecessary as
the entire network is done improved.Additionally, we in-
creased the complexity and diversity of the input dataset
since the prototype generation. The network is more ro-
bust and effective torwards the kinds of user input it takes.
We discuss more of this in detail in the evaluation section.

We show in Figure 8seven random examples of the test-
ing outputs using sketches that the network had neven seen.
Note that we only use the one generator that generates from
the sketch domain to the face image domain.

4.3.2 The Web Application User Interface

Our user interface is an interactive real-time web appli-
cation where the user can sketch a face and generate a
photorealistic face image output. The Web Application is
shown in Figure 10. Details are discussed in the demo.
It is available here: https://visdb-final.uc.r.
appspot.com/

Time and effort divested in this. It is worth mentioning
that the Web Application development of the demo, from
start to finish, took in total two weeks, about 80 hours.

5

https://visdb-final.uc.r.appspot.com/
https://visdb-final.uc.r.appspot.com/


The author had no experience in web development before,
but in order to evaluate the performance of our network and
have a place to demonstrate the goodness and effectivess,
we decided that it is worth spending a lot of time and effort
into this.

Figure 10. Our DEMO Web Application User Interface

5. Evaluation
5.1. Quantitative Measure: FID score

We used the Frechet Inception Distance (FID) score [5]
as a quantitative measure to evaluate how similar our gen-
erated face photos are as compared to the ground truth face
photos. This score is defined as d2:

d2 = ||mu1–mu2||2 + Tr(C1 + C2–2 ∗ sqrt(C1 ∗ C2))

where mu1 and mu2 are the feature-wise mean of the
real and generated images, C1 and C2 are the covariance
matrix for the real and generated feature vectors, often re-
ferred to as sigma, ||mu1–mu2||2 are the sum squared dif-
ference between the two mean vectors, and Tr refers to the
trace of a matrix.

Figure 11. FID scores vs different distortion types and levels. Im-
age Taken from [5].

Figure 11 shows FID under different distortion types:
Gaussian noise (upper left), Gaussian blur (upper right),
swirled images (lower right), and salt and pepper noise
(lower right). We can tell that with stronger distortion the
FID score monotonically increases.

5.2. Qualitative Measure: Human Perceptual Study
using A/B Testing

Participant Selection. We conducted a small human
perceptual study of 7 participants, all of whom indicated
in their initial survey of some level of artistic mastery and
aesthetic appreciation. We wanted to make sure that partici-
pants can draw face contours so to evaluate the effectiveness
of our network.

5.2.1 Phase 1

Evaluation on which image looks the most realistic. Metrics
shown in Table 1.

Method %Ranked Realistic±Error
Real Image 93%±2.79%
Ours 7%±1.33%

Table 1. Phase 1 statistics from feedback of 7 participants.

5.2.2 Phase 2

Evaluation on which image (1) fits your drawing the most
and (2) is the most realistic. It is worth mentioning that this
will be kept for future work.

Method %Realistic±Error %Fits±Error
pix2pix %± %±

CycleGAN+Canny %± %±

Ours %± %±

Table 2. Phase 2 participant feedback. Placeholder Table.

Overall, the test users demonstrated a preference towards
the real images that they appeared to be more realistic.
However, their level of satisfaction indicated of our demo
was above what they expected. In our analysis, we discov-
ered that the differences between the user study output and
the test output was caused by the different stroke sizes used
in training and at demo time. The smallest storke size that
web application UI allows is 1 px and with a 1px smooth-
ing effect applied to it, it appears like 3px wide, which is
wider than those in the training data. Thus the network is
not trained to be generalizing well for this type of thick-
stroke sketches.
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6. A Future System and Reflection

As discussed previously, a future system would include
(1) more diversity and complexity in the contour dataset, so
that it includes a wide variety of drawing styles and edge
styles, (2) more complexity in the selected facial features
but less breath diversity in the features selected given a
small dataset, or (3) increase dataset training size to even
bigger and more computational resources, (4) potentially
compress the network to under 100ms per run, (5) include
an additional phase in the evaluation process so that com-
parison can be drawn between this work and the existing
State-of-the-Art, and more over, (6) increase the size of the
input canvas on the demo so that the relative stroke size can
be the same as those in the training data.

A lot was learned for this final project. The author had
never trained a GAN before, but now the author knows how
to train a GAN, dynamically, and use Google Cloud Storage
as well for effective training. Moreover, the author learned
how to conduct effective user studies. The authorgot to ag-
ilely develop her UI during the user studies by taking in user
feedback. Besides, the author learned the idea of ”visual re-
trieval” and the generative neural network equivalence of it.
The author also learned that training of a neural network
should start small, from a trial dataset, then scaled up to a
training dataset, in order to detect any early malfunctions in
the pipeline.
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