
PHYS 451: Computational Mechanics

Final Project Report:

Numerical Simulation of the Navier-Stokes Equations

for Incompressible Viscous Fluid Flow in Two Dimensions

Yingsi Qin, Dejan Maksimovski

Background

Almost all macroscopic physical systems are “submerged” in a fluid. This means that any

complete consideration of their mechanics involves solving for the effects of the motion of

this surrounding fluid. In some cases, understanding the motion of the (surrounding) fluid is

the actual goal of solving the mechanics of a system – eg. the flow of air around an aircraft

wing, or analysis of a cars aerodynamic properties. By a relatively quick survey of fields

in engineering, medicine and environmental studies, we can think of many more instances

where the mechanical behaviour of a fluid is a major focus: atmospheric flows (models for

weather prediction), models for global ocean currents, the circulation of blood, breathing,

etc.

In all of the aforementioned examples, one needs to be able to simulate the equations theo-

retically describing the motion of the fluid. Because of this, we decided to embark on making

a numerical model with which one can simulate the motion of a fluid, with the possibility

of adding stationary obstructions in the fluid’s path. Due to the character of most of the

fluids we confront in our everyday life, it was decided that the model would correspond to

incompressible, but viscous, fluids.

1

The System Modeled

The field of physics that deals with the dynamics of fluids, both classical and relativistic,

is fluid dynamics. An analysis of the dynamics of incompressible viscous fluids done in this

field, gives the following equations describing the fluids’ motion:

∂v

∂t
= −(v · ∇)v + ν∇2v − 1

ρ
∇p+ f , (1)

∇ · v = 0, (2)

v(r, t = 0) = v0(r), (3)

where v(r, t) is the velocity of the fluid, p(r, t) is the absolute pressure in the fluid, f(r, t) is

the force per unit mass of the liquid due to external forces, ρ is the fluid’s density, and ν is

the kinematic viscosity of the fluid. The first equation is also known as the Navier-Stokes

Equation, and is basically Newton’s second law for extremely small (practically point size),

but still macroscopic segments of the fluid. The second, third and fourth terms on the right-

hand-side correspond to the force per unit mass experienced by the small fluid segment due to

viscosity, the gradient of the pressure in the fluid, and the external forces, respectively. The

first term on the right-hand-side is the negative spatial part of the substantial derivative

of the small segment’s velocity. In other words this term gives the amount by which the

segment’s velocity changes per unit time due to it moving in the spatially varying vector

field v. With this term placed in the right-hand-side, the left-hand-side is simply the partial

derivative of v with respect to time at some point in space determined by r. The reason

for why we have isolated this partial derivative is because in the numerical model we will

be evaluating v for successive moment in time, only at a certain discrete collection of fixed

2

points in space. The second equation is the incompressibility condition, asserting that there

is no net flux of fluid mass into any closed region in the fluid. The third equation is simply

the initial condition for the fluid’s velocity.

Numerical Methods and MATLAB Functions

For all points in our field, the Navier-Stokes equation (1) is solved from t to t + ∆t using

Euler’s method

v(r, t+ ∆t) ≈ v(r, t) +
∂v

∂t

∣∣∣
r,t

∆t, (4)

with the right-hand side evaluated at t. The evaluation of the right-hand side at each

timestep involves 1) calculating the the pressure p(r, t) on a two-dimensional spatial grid,

and 2) calculating the right-hand-side of (1) by using the knowledge of v(r, t) and the “newly”

found p(r, t).

In order to find the pressure p(r, t), we use the incompressibility condition (2). An expansion

of the incompressibility condition imposed on v(r, t + ∆t), after using the Euler’s method

(4) from the previous time step, along with the assumption that v(r, t) satisfies (2), gives

∇ · ∂v
∂t

∣∣∣
r,t

= ∇ ·
(
−(v · ∇)v + ν∇2v − 1

ρ
∇p+ f

) ∣∣∣
r,t

= 0, (5)

which is further reduced to

∇2p = ∇ ·
(
−(v · ∇)v + ν∇2v + f

) ∣∣∣
r,t
. (6)

We can see that (6) is of the form of Possion’s equation.

Thus, we calculate pressure p(r, t) at each time step using the method of relaxation by feeding

3

v(r, t) from the previous timestep to our MATLAB function p(ax, ay, bp, dL, deltap).

It takes as inputs ax and ay, which are two-dimensional arrays for the x- and y-components

of the divergence’s argument on the right-hand-side of (6); bp is a two-dimensional matrix

encoding the position of internal and boundary points with values of 0 and 1, respectively;

dL is the calculation step size for spatial derivatives; and deltap is the tolerance value for

pressure. The function returns a two-dimensional matrix giving the pressure at each point

on the two-dimensional spatial domain, at the designated time step.

For each point in the field, all first and second order spatial partial derivatives are calculated

by calling our MATLAB functions d1(F, dL, bp, i, j, C) and d2(F, dL, bp, i, j,

C), respectively. F is the differentiated function determined for all points in the spatial

domain; dL is the calculation step size; bp is the aforementioned two-dimensional matrix for

boundary points; i is the row index for the current point, and j is the column index. If C

equals 1, we take the partial derivatives with respect to y, if it equals 2, we take the partial

derivatives with respect to x.

The Navier-Stokes equation is solved by calling NavierStokes2d(fx, fy, vx0, vy0, dL,

dt, NL, Nt, bp, rho, nu, deltap). The function outputs three things: vx – a three-

dimensional matrix for the x-component of velocity of the fluid with the first matrix dimen-

sion corresponding to the y-coordinate, the second one to the x coordinate, and the third

dimension to t. vy is similarly a three-dimensional matrix for the y-component of the fluid’s

velocity. P is a similar three-dimensional matrix for the pressure. fx and fy are similar

matrixes giving the x- and y-components of the external force per unit mass. vx0 and vy0

are two-dimensional matrices for the x- and y-components of the initial velocity of the fluid,

4

respectively. The rest of the inputs contain the aforementioned dL (the spatial grid spacing);

dt – the time step; NL – the number of points in the field; Nt – the number of time steps; the

aforementioned bp; rho – the density of the fluid; nu – the kinematic viscosity of the fluid;

and deltap – the tolerance value when integrating pressure p. All variables are in SI units.

Initial Conditions

We have v(r, t = 0) = v0(r) and p(r, 0) = p0(v0(r)), and the aforementioned bp, as the initial

conditions to solve for the Navier-Stokes equation. The initial conditions thus vary case by

case. To place round-shape obstacles in the field, we call circle(bp,r,N,dL,xa,ya), which

adds a disk of boundary points (set to 1) to the input matrix bp. The function takes as

inputs bp – the original boundary point matrix; r – the radius of the circle; N – the number

of points in each direction of the (square) boundary point matrix; dL – the step size between

points; and xa and ya – the horizontal and vertical translational distances of the center of

the circle, respectively.

Results and Analysis

Simulation 1

In the first simulation, we set the top, bottom, and left boundaries at a fixed pressure of

500,000 Pa, and the right boundary at a fixed pressure of 900,000 Pa. For the initial velocity

of the fluid, we had the center half of a thin band of fluid on the left moving in the x-direction

(see Figure 2), with the speed (v = vx) being modulated as the starting quarter wavelength

of a sine function. In Figure 1, we have the initial pressure as function of space, which was

5

calculated using method of relaxation. From this initial pressure, we expect the fluid to

accelerate and thus flow in the +x-direction.

Figure 3 shows the velocity of the fluid at the third timestep. We indeed see that the fluid

has acquired a speed in the +x-direction, as dictated by the gradient of the initial pressure.

We also see that the fluid has acquired speed in the y-direction near the top and bottom

boundaries. This makes sense considering the sharp decrease in the pressure near their

junction with the right boundary, pushing the fluid inward.

Simulation 2

In the second simulation, initial pressures were the same as in the first simulation except

that we have a round-shape obstacle in the middle of the field where the pressure was fixed

at 500,000 Pa, shown in Figure 4. For the initial velocity of the fluid, we had a thin band

of fluid on the left moving in the x-direction (see Figure 5), with the speed (v = vx) being

modulated as the starting quarter wavelength of a sine function. From this initial pressure,

we expect the fluid to flow in the +x-direction but around the obstacle with higher speed

near areas of sharper change in pressure.

Figure 6 shows the velocity of the fluid at the third timestep. We indeed see that the fluid

has acquired a speed everywhere in the field except where the obstacle is. As dictated by the

gradient of the initial pressure, we also see that the magnitude of the velocity is higher near

the area of sharper change in pressure. The fluid flows around the obstacle and continues to

gain more speed in the +x direction.

6

(a) Figure 1 (b) Figure 2

(c) Figure 3

7

(a) Figure 4 (b) Figure 5

(c) Figure 6

8

(a) Figure 7 (b) Figure 8

(c) Figure 9 (d) Figure 10

Simulation 3

In the third simulation, we set all of the four exterior boundaries at a fixed pressure of

700,000 Pa, and a small circular region in the middle of the domain to a fixed pressure of

0 Pa (see Figure 7). In this case all the fluid was initially at rest (see Figure 8). In Figure

7, we have the initial pressure as function of space, calculated using method of relaxation.

From this initial pressure, we expect the fluid to start flowing towards the middle circular

region, which would be acting as a sink.

9

Figure 9 shows the velocity of the fluid at the second timestep. We indeed see that the

fluid has at all places started to flow towards the middle circular region, as dictated by

the gradient of the initial pressure. At the third time step however (see Figure 10), we see

that the flow towards the middle region has stopped, and there is even flow directed away

from this region. This makes sense, since the initial flow towards the middle would result in

increased pressure in the vicinity of the circular region, causing the pressure there to increase

and thus accelerate the fluid away from the middle. Naturally this would happen since the

middle circular region is not a perfect sink, but just a region at a lower pressure.

Simulation 4

In the fourth simulation, we set all of the four exterior boundaries, along with a circular

region in the middle of the domain (as in Simulation 3), at a fixed pressure of 700,000 Pa

(see Figure 11). In this case we used the same initial velocity for the fluid as in Simulation

2 (see Figure 12). In Figure 11, we have the initial pressure as function of space, calculated

using method of relaxation. From this initial pressure, we expect the fluid to start flowing

towards region between the boundaries and the middle disk, and interact also somehow with

the initially moving segments of the fluid (acting like a superposed wave pulse).

Figure 13 shows the velocity of the fluid at the third timestep. We indeed see that the fluid

has at all places started to flow towards the region between the boundaries and the middle

disk, as dictated by the gradient of the initial pressure. We also see that the initially moving

region does resemble a superposed wave pulse traveling to the right, but we still require more

computational time in order to be able to see how it proceeds to the right later in time.

10

(a) Figure 11 (b) Figure 12

(c) Figure 13

11

(a) Figure 14 (b) Figure 15

(c) Figure 16

12

Simulation 5

In the fifth simulation, we set all of the four exterior boundaries at a fixed pressure of 10 Pa

(see Figure 14). In this case the fluid was given an initial velocity (see Figure 8) of

v0(x, y) =

(
−
(
y − L

2

)
, x− L

2

)
, (7)

where L is the length of an edge of the (square) spatial domain. In Figure 14, we have the

initial pressure as function of space, calculated using method of relaxation. Considering this

initial pressure, we expect that its gradient will be able to supply the needed centripetal

acceleration in order to ‘sustain’ revolving motion of the fluid.

Figure 16 shows the velocity of the fluid at the tenth timestep. We indeed see that the fluid

has practically maintained its initial velocity. That means that the pressure gradient was

indeed able to supply the necessary centripetal acceleration needed to maintain the revolving

motion. This simulation was also valuable since it showed (short-period) stability of a vortex

– a trait of some solutions to the Navier-Stokes equation.

Conclusion

Considering some of the qualitative similarities between the previous simulations and com-

monly observed fluid flows, we can see that the method implemented is a valid start in

attempting to simulate fluid flow. Even though the simulations are able to convey aspects

of the mechanical behaviour of fluid, due to uncertain accuracy of the numerical method in

some particular setups, we can’t rely on this method to give us an understanding of the fluid’s

motion for instances when we don’t have clear qualitative predictions and expectations.

13

This is primarily due to the fact that the executed simulations – due to practical time limi-

tations – were done at a lower accuracy. Since we are using Euler’s Method, along with the

Method of Relaxation, with all spatial derivatives being O((∆L)2), the error in the algorithm

can be generally represented by maxO(∆t),O((∆L)2),O(∆p). Thus, in order to increase

the accuracy of the method, one should minimize the intervals ∆t and ∆L, as well as the

tolerance ∆p used in the Method of Relaxation. By modifying these parameters sufficiently,

we expect to the able to get very close to the actual solutions for the fluid’s motion, since the

two aforementioned numerical methods approach the actual solutions as limits, as accuracy

is increased. Nevertheless, the lack of sufficient reliability of this method with relatively

low accuracy, testifies to large error magnifications associated with this problem and our

approach.

Another systematic limitation to our simulations is the fact that in our approach, we were

unable to make the edges of the two dimensional domain be perfectly rigid walls. This is

due to the fact that, when they were assigned to a large fixed pressure value – in an attempt

to create a large discontinuity in the pressure, – after the method of relaxation it was always

smoothly decreasing with increasing distance from the spatial domain’s edges. Because of

this, in the simulations one could observe that the fluid near the boundaries was acquiring

a velocity component normal to them. The fact that the fluid could not be isolated by the

boundaries, also lead to a non zero energy flux through these boundaries. Addressing the

option of having rigid walls is definitely a priority in any continuation of this study.

Examples of other modifications that can be made in further work are: the option of having

periodic boundary conditions (allowing to simulate the flow in a toroidal region); simulations

14

done for a three-dimensional spatial domain; and the possibility of drawing the trajectories

of small segments of the fluid during the simulation.

References

[1] Li, Ming. Numerical Solutions for the Incompressible Navier Stokes Equations. PhD

Thesis. 1999.

[2] U. Ghia, K.N Ghia, C.T Shin. High-Re solutions for incompressible flow using the Navier-

Stokes equations and a multigrid method. Journal of Computational Physics. PP 387-411.

1982.

[3] Landau, L. D., Lifschitz, E. M., A Course in Theoretical Physics, Volume 6, Fluid Dy-

namics.

[4] Fefferman, C. L., Existence and Smoothness of the Navier-Stokes Equation, Official Mil-

lenium Problem description.

[5] Majda, A. J., Bertozzi, A. L., Vorticity and Incompressible Flow, Cambridge Texts in

Applied Mathematics, 2002.

Appendix: MATLAB Code

1 function [vx , vy , P] = NavierStokes2d(fx, fy, vx0 , vy0 , dL , dt, NL, Nt, bp, rho , nu , deltap)

2 % NavierStokes2d(fx, fy, vx0 , vy0 , dL , dt , NL, Nt, bp, rho , nu, deltap):

3 % solves the two -dimensional Navier -Stokes equation

4 % inputs:

5 % fx: a 3d matrix for the x-component of external forces

6 % fy: a 3d matrix for the y-component of external forces

15

7 % vx0: a 3d matrix for the x-component of initial velocity of the fluid

8 % vy0: a 3d matrix for the y-component of the initial velocity

9 % dL: the integration step size

10 % dt: the time step

11 % NL: the number of points in the field

12 % Nt: the number of time steps

13 % bp: the two -dimensional boundary point matrix

14 % rho: the density of the fluid

15 % nu: the viscosity of the fluid

16 % deltap: the tolerance value when integrating pressure p

17 % output:

18 % vx: a 3d matrix for the x-component of velocity of the fluid with the

19 % first dimension for y, second dimension for different x, and the

20 % third dimension for time t

21 % vy: a 3d matrix for the y-component of velocity of the fluid

22 % P: a 3d matrix for pressure

23 % errors: none

24

25 vx = zeros(NL , NL , Nt);

26 vy = zeros(NL , NL , Nt);

27 P = zeros(NL, NL, (Nt -1));

28 vx(:, :, 1) = vx0;

29 vy(:, :, 1) = vy0;

30 ax = zeros(NL , NL);

31 ay = zeros(NL , NL);

32

33 for k = 1:(Nt -1)

34

35 %calculating 1st ax and ay

36 for i = 1:NL

37 for j = 1:NL

38 if (bp(i, j) == 0)

39 % calculate x components of the right -hand side of equation 7 inside the del operator

40 ax(i, j) = -vx(i, j, k)*d1(vx(:, :, k), dL , bp , i, j, 1) - vy(i, j, k)*d1(vx(:, :, k), dL, bp, i, j, 2) +

nu*d2(vx(:, :, k), dL , bp , i, j, 1) + nu*d2(vx(:, :, k), dL, bp, i, j, 2) + fx((i-1)*dL , (j-1)*dL, (k

-1)*dt);

41 % calculate y components

42 ay(i, j) = -vx(i, j, k)*d1(vy(:, :, k), dL , bp , i, j, 1) - vy(i, j, k)*d1(vy(:, :, k), dL, bp, i, j, 2) +

nu*d2(vy(:, :, k), dL , bp , i, j, 1) + nu*d2(vy(:, :, k), dL, bp, i, j, 2) + fy((i-1)*dL , (j-1)*dL, (k

-1)*dt);

43 end

44 end

45 end

46

47 %using 1st ax and ay to get p at time step

48 P(:, :, k) = p(ax , ay , bp , dL , deltap);

16

49

50 %calculating 2nd ax and ay , and then vx and vy for time step k+1

51 for i = 1:NL

52 for j = 1:NL

53 if (bp(i, j) == 0)

54 ax(i, j) = ax(i, j) - d1(P(:, :, k), dL, bp, i, j, 1)/rho;

55 ay(i, j) = ay(i, j) - d1(P(:, :, k), dL, bp, i, j, 2)/rho;

56 vx(i, j, k+1) = vx(i, j, k) + dt*ax(i, j);

57 vy(i, j, k+1) = vy(i, j, k) + dt*ay(i, j);

58 end

59 end

60 end

61 end

1 function p_out = p(ax, ay, bp, dL, deltap)

2 % p(p0 , ax , ay , bp, deltap): solves the incompressibility

3 % equation for pressure p(x,y,t) at a time step using method of relaxation

4 % while taking the boundary and interior boundry points

5 % inputs:

6 % ax: a 2d array for x components of the r.h.s of eq. 7 inside the del operator

7 % ay: a 2d array for y components of the r.h.s of eq. 7 inside the del operator

8 % bp: a 2-d array for boundry points; if bp(i, j) is 1, the

9 % corresponding point is a boundary point which is held at a

10 % fixed pressure and should not be changed during the iteration.

11 % dL: the calculation step size for del

12 % deltap: specifies the accuracy , the tolerance value for pressure

13 % output:

14 % p_out: the final 2d matrix of pressure at a designated timestep

15 % errors: none

16

17 sizep = size(bp);

18 NL = sizep (1);

19

20 % the initial conditions for p(x,y) at all points

21 p0=zeros(NL,NL);

22 p0=bp *100000;

23

24 p_out=p0;

25 Maxdp=deltap +1; % initialize Maxdp to be an arbituary value

26 while Maxdp >= deltap

27 prevP=p_out;

28 for i=1: length(p0(:,1)) % loop for y

29 for j=1: length(p0(1,:)) % loop for x

30 if bp(i,j)~=1

31 rhs =(1/4) *(dL^2)*(d1(ax,dL,bp ,i,j,1)+d1(ay ,dL ,bp,i,j,2));

32 p_out(i,j) = (1/4)*(prevP(i+1,j)+prevP(i-1,j)+prevP(i,j+1)+prevP(i,j-1))-rhs;

17

33 end

34 end

35 end

36 Maxdp=max(max(abs(p_out -prevP)));

37 end

1 function d1_out = d1(F, dL, bp , i, j, C)

2 % d1(F, dL , bp , i, j, C): calculates the del of F at the point of y-index i

3 % and x-index j

4 % inputs:

5 % F: a direction component of a two -dimensional vector for the current point in the field

6 % dL: the calculation step size

7 % bp: the two -dimensional matrix for boundary points

8 % i: the row index for the current point

9 % j: the column index for the current point

10 % C: if it equals 1, we take the partial derivatives with respect to y;

11 % if it equals 2, we take the partial derivatives with respect to x

12 % output:

13 % d1_out: the del scalar value for the current point

14 % errors: none

15

16 if (C == 2)

17 if ((bp(i+1, j) == 0) && (bp(i-1, j) == 0))

18 d1_out = (F(i+1, j) - F(i-1, j))/(2*dL);

19 elseif ((bp(i+1, j) == 0) && (bp(i-1, j) == 1))

20 d1_out = ((-3/2)*F(i, j) + 2*F(i+1, j) + (-1/2)*F(i+2, j))/dL;

21 else

22 d1_out = ((3/2)*F(i, j) + (-2)*F(i-1, j) + (1/2)*F(i-2, j))/dL;

23 end

24 else

25 if ((bp(i, j+1) == 0) && (bp(i, j-1) == 0))

26 d1_out = (F(i, j+1) - F(i, j-1))/(2*dL);

27 elseif ((bp(i, j+1) == 0) && (bp(i, j-1) == 1))

28 d1_out = ((-3/2)*F(i, j) + 2*F(i, j+1) + (-1/2)*F(i, j+2))/dL;

29 else

30 d1_out = ((3/2)*F(i, j) + (-2)*F(i, j-1) + (1/2)*F(i, j-2))/dL;

31 end

32 end

1 function d2_out = d2(F, dL, bp , i, j, C)

2 % d2(F, dL , bp , i, j, C): calculates the laplacian of F at the point of y-index i

3 % and x-index j

4 % inputs:

5 % F: a direction component of a two -dimensional vector for the current point in the field

6 % dL: the calculation step size

7 % bp: the two -dimensional matrix for boundary points

18

8 % i: the row index for the current point

9 % j: the column index for the current point

10 % C: if it equals 1, we take the partial derivatives with respect to y;

11 % if it equals 2, we take the partial derivatives with respect to x

12 % output:

13 % d2_out: the laplacian scalar value for the current point

14 % errors: none

15

16 if (C == 2)

17 if ((bp(i+1, j) == 0) && (bp(i-1, j) == 0))

18 d2_out = (F(i+1, j) - 2*F(i, j) + F(i-1, j))/(dL^2);

19 elseif ((bp(i+1, j) == 0) && (bp(i-1, j) == 1))

20 d2_out = (2*F(i, j) + (-5)*F(i+1, j) + 4*F(i+2, j) + (-1)*F(i+3, j))/(dL^2);

21 else

22 d2_out = (2*F(i, j) + (-5)*F(i-1, j) + 4*F(i-2, j) + (-1)*F(i-3, j))/(dL^2);

23 end

24 else

25 if ((bp(i, j+1) == 0) && (bp(i, j-1) == 0))

26 d2_out = (F(i, j+1) - 2*F(i, j) + F(i, j-1))/(dL^2);

27 elseif ((bp(i, j+1) == 0) && (bp(i, j-1) == 1))

28 d2_out = (2*F(i, j) + (-5)*F(i, j+1) + 4*F(i, j+2) + (-1)*F(i, j+3))/(dL^2);

29 else

30 d2_out = (2*F(i, j) + (-5)*F(i, j-1) + 4*F(i, j-2) + (-1)*F(i, j-3))/(dL^2);

31 end

32 end

1 function bp = circle(bp ,r,N,dL,xa,ya)

2 % circle(bp,r,N,dL ,xa,ya): returns a boundary point matrix that has a

3 % round -shape obstacle; points covered in a circle have values of 1 and all

4 % other points have values of 0

5 % inputs:

6 % bp: the original boundary point matrix

7 % r: radius of the round -shape obstacle

8 % N: number of points in the boundary point matrix

9 % dL: step size between points

10 % xa: the horizontal translational distance of the center of the circle

11 % ya: the vertical translational distance of the center of the circle

12 % output:

13 % bp: the final 2d boundary matrix

14 % errors: none

15

16 i=1;

17 j=1;

18 x=0:dL:(N-dL)*dL;

19 y=0:dL:(N-dL)*dL;

20 for j=1:N

19

21 for i=1:N

22 check =((x(j)-xa)^2) +((y(i)-ya)^2);

23 if check <=(r^2)

24 bp(i,j)=1;

25 end

26 i=i+1;

27 end

28 j=j+1;

29 end

In run.m:
1 % This is the script for calling the functions and plotting the graphs

2 clear all;

3 dL = 0.001;

4 dt = 0.01;

5 NL = 50;

6 Nt = 60;

7 rho = 1000;

8 nu = 1e-4;

9 deltap = 0.001;

10 x = 0:dL:(NL*dL-dL);

11 y = 0:dL:(NL*dL-dL);

12 t = 0:dt:(Nt*dt-dt);

13

14 % ------------ initial conditions ------------

15 vx0 = zeros(NL, NL);

16 vy0 = zeros(NL, NL);

17 for i=1:NL

18 for j=1:NL

19 vx0(i,j) = -(y(i)-(NL -1)*dL/2);

20 vy0(i,j) = x(j)-(NL -1)*dL/2;

21 end

22 end

23 bp = zeros(NL , NL);

24 bp(:, 1) = 1;

25 bp(:, NL) = 1;

26 bp(1, :) = 1;

27 bp(NL , :) = 1;

28 % bp = circle(bp,NL*dL/6,NL,dL ,NL*dL/2,NL*dL/2);

29

30 % ------------ calling the functions ------------

31 [vx , vy, P] = NavierStokes2d (@(x, y, t) 0, @(x, y, t) 0, vx0 , vy0 , dL , dt , NL , Nt , bp , rho , nu, deltap);

32 [xgrid , ygrid] = meshgrid(x, y);

33

34 % ------------ plotting the graphs ------------

20

35 for k = 1:(length(t) -1)

36 fig = figure;

37 % surf(x, y, P(:, :, k));

38 quiver(xgrid , ygrid , vx(:, :, k), vy(:, :, k), 3);

39 pause (2*dt);

40 M(k)=getframe(fig);

41 end

42 movie(M)

21

